The Effects of Indoxyl Sulfate on Human Umbilical Cord-Derived Mesenchymal Stem Cells In Vitro.

نویسندگان

  • Wei Wang
  • Xueyong Liu
  • Wei Wang
  • Jinghua Li
  • Yuanyuan Li
  • Liping Li
  • Shaohua Wang
  • Jianchun Zhang
  • Youkang Zhang
  • Haichang Huang
چکیده

BACKGROUND/AIMS Indoxyl sulfate, an important protein-bound uremic toxin, can damage stem cells, thus hampering stem cell-based regenerative medicine approaches targeting chronic kidney diseases (CKD). Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) are thought to have promising clinical application because of their high proliferative potential and ease of isolation than MSCs from other sources. In the present study, we aimed to determine the harmful effects of indoxyl sulfate on the phenotype and functional potential of hUC-MSCs in vitro. METHODS The toxicity and cell viability was examined by Trypan blue exclusion and MTT assay. The cellular surface markers and the percentage of apoptotic cells by Annexin-V/PI staining were analyzed by flow cytometry. Proliferation was evaluated based on cell number counting and Ki-67 immunostaining. Cell senescence was measured using senescence-associated β-Galactosidase activity. The ability to stimulate the development of CD4+CD25+FoxP3+ regulatory T cells was assessed by incubating hUC-MSCs with peripheral blood mononuclear cells from the healthy volunteers. RESULTS Our results demonstrated that the immunophenotype of hUC-MSCs was not affected by indoxyl sulfate flow cytometry. However, a significant decrease in cell numbers and fraction of Ki-67 positive proliferating cells, along with a significant increase in cellular senescence were detected in hUC-MSCs after exposure to indoxyl sulfate. Additionally, their ability to stimulate CD4+CD25+FoxP3+ regulatory T cell production was compromised when hUC-MSCs were pretreated with indoxyl sulfate. CONCLUSION Taken together, our study clearly demonstrated that the molecular alterations and functional incompetence in hUC-MSCs under the challenge of indoxyl sulfate in vitro.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

P 82: The Transplantation of Human Umbilical Cord Mesenchymal Stem Cells in Neonatal Strokes

Brain injuries that caused by strokes (result of intra partum ischemia) are a frequent cause of prenatal mortality and morbidity with limited therapeutic options. Transplanting human mesenchymal stem cells (hmscs) indicates improvement in hypoxic Ischemic brain injury (HIBD) by secretion growth factor stimulating repair processes (Hmscs) known as multi potent cells which isolated from bone marr...

متن کامل

3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression

New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...

متن کامل

Platelet-derived Microparticles increase the Expression of hTERT Gene in Umbilical Cord Mesenchymal Stem Cells

Background: Mesenchymal stem cells have been widely considered in clinical researches because of their self-renewality and differentiation into various tissues. Nevertheless, their limited in vitro life span, which occurs only after several divisions, makes some changes in these cells, which affects all of their characteristics and remarkably reduces their application. In this study, the effect...

متن کامل

Differentiation of Umbilical Cord Lining Membrane-Derived Mesenchymal Stem Cells into Endothelial-Like Cells

Background: Stem cell therapy for the treatment of vascular-related diseases through functional revascularization is one of the most important research areas in tissue engineering. The aim of this study was to investigate the in vitro differentiation of umbilical CL-MSC into endothelial lineage cells. Methods: In this study, isolated cells were characterized for expression of MSC-specific marke...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 38 1  شماره 

صفحات  -

تاریخ انتشار 2016